Search results

Search for "surface architecture" in Full Text gives 10 result(s) in Beilstein Journal of Nanotechnology.

Combining physical vapor deposition structuration with dealloying for the creation of a highly efficient SERS platform

  • Adrien Chauvin,
  • Walter Puglisi,
  • Damien Thiry,
  • Cristina Satriano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 83–94, doi:10.3762/bjnano.14.10

Graphical Abstract
  • field and the analyte through an i) electromagnetic enhancement (i.e., ‘hot spot’) and/or a ii) chemical enhancement [10]. Despite the impressive detection limit achieved by the nanoporous structures, little attention has been paid to the sample surface architecture despite of the fact that the SERS
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2023

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • ; chiral surface; chirality recognition; quartz crystal microbalance (QCM); sensing applications; surface architecture; Introduction Chirality is a prevalent phenomenon in nature. Many common biological macromolecules such as proteins, ribose, and cellulose are inherently chiral. Chiral molecules have two
PDF
Album
Review
Published 27 Oct 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
PDF
Album
Review
Published 11 Apr 2022

Nanostructured and oriented metal–organic framework films enabling extreme surface wetting properties

  • Andre Mähringer,
  • Julian M. Rotter and
  • Dana D. Medina

Beilstein J. Nanotechnol. 2019, 10, 1994–2003, doi:10.3762/bjnano.10.196

Graphical Abstract
  • for their survival in extreme conditions [1][2][3][4]. In plants, the unique surface architecture of the lotus leaf enables superhydrophobic and self-cleaning properties for sustaining efficient photosynthesis, even in polluted environments [5][6][7]. In the realm of animals, mosquitos utilize an
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2019

Ultraviolet patterns of flowers revealed in polymer replica – caused by surface architecture

  • Anna J. Schulte,
  • Matthias Mail,
  • Lisa A. Hahn and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2019, 10, 459–466, doi:10.3762/bjnano.10.45

Graphical Abstract
  • structure and its reflective properties is also relevant for biomimetic applications, for example, in the field of photovoltaics. Based on previous work, we selected three model species with distinct UV-patterns to explore the possible contribution of the surface architecture to the UV-signaling. Using a
  • -reflecting area is at the petal tip (white area). These UV-patterns are common patterns in angiosperm flowers [7]. For the analysis of the surface architecture parameters, scanning electron microscopy (SEM) images of the UV-absorbing (Figure 2, left images) and the UV-reflecting (Figure 2, right images
  • -reflecting areas. Using petal replicas, we separated this surface architecture from the cell pigments and thereby eliminated their influence on the UV-patterns. This procedure provides the first proof that the UV-patterns in flowers are not just pigment-based, but also structurally determined. Through this
PDF
Album
Full Research Paper
Published 13 Feb 2019

Functionalized nanostructures for enhanced photocatalytic performance under solar light

  • Liejin Guo,
  • Dengwei Jing,
  • Maochang Liu,
  • Yubin Chen,
  • Shaohua Shen,
  • Jinwen Shi and
  • Kai Zhang

Beilstein J. Nanotechnol. 2014, 5, 994–1004, doi:10.3762/bjnano.5.113

Graphical Abstract
  • for another metal sulfide photocatalyst [31]. Although the mechanism for the formation of nanostep structures could be different, the important role of the nanostep surface for the enhancement of photocatalytic performance was also shown. The surface architecture of composite photocatalysts can
PDF
Album
Review
Published 09 Jul 2014

Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces

  • Matthias J. Mayser,
  • Holger F. Bohn,
  • Meike Reker and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2014, 5, 812–821, doi:10.3762/bjnano.5.93

Graphical Abstract
  • sensitive custom made strain gauge force transducer setup. The volume of air held by a surface was quantified by comparing the buoyancy force of the specimen with and then without an air layer. Air volumes retained by the Salvinia-surfaces ranged between 0.15 and 1 L/m2 depending on differences in surface
  • architecture. We verified the precision of the method by comparing the measured air volumes with theoretical volume calculations and could find a good agreement between both values. In this context we present techniques to calculate air volumes on surfaces with complex microstructures. The introduced method
PDF
Album
Full Research Paper
Published 10 Jun 2014

Biocalcite, a multifunctional inorganic polymer: Building block for calcareous sponge spicules and bioseed for the synthesis of calcium phosphate-based bone

  • Xiaohong Wang,
  • Heinz C. Schröder and
  • Werner E. G. Müller

Beilstein J. Nanotechnol. 2014, 5, 610–621, doi:10.3762/bjnano.5.72

Graphical Abstract
  • physiological conditions a thermodynamically possible reaction can be initiated or prevented [30]. Almost exclusively, alterations of the heights of the activation energy barriers are adjusted by enzymes or by the surface architecture of membranes separating two phases. The recent findings that in animals the
PDF
Album
Review
Published 12 May 2014

Functionalised zinc oxide nanowire gas sensors: Enhanced NO2 gas sensor response by chemical modification of nanowire surfaces

  • Eric R. Waclawik,
  • Jin Chang,
  • Andrea Ponzoni,
  • Isabella Concina,
  • Dario Zappa,
  • Elisabetta Comini,
  • Nunzio Motta,
  • Guido Faglia and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2012, 3, 368–377, doi:10.3762/bjnano.3.43

Graphical Abstract
  • agglomeration, phase composition and surface architecture [5]. In terms of the targeted optimisation of gas-sensor characteristics, surface engineering is potentially a powerful instrument for the control of gas response. To date, designers have mainly focused on doping the metal oxide by means of metal
PDF
Album
Full Research Paper
Published 02 May 2012

Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) – new design principles for biomimetic materials

  • Anna J. Schulte,
  • Damian M. Droste,
  • Kerstin Koch and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2011, 2, 228–236, doi:10.3762/bjnano.2.27

Graphical Abstract
  • such a surface architecture requires two production steps. Firstly, the microstructures must be produced by moulding, lithography or in-print-techniques. Secondly, the nanostructure production requires expensive lithographic techniques, or self-assembling materials, such as metal oxides [9][21]. Some
  • “petal effect” and are anti-adhesive for water droplets. It is well known that hierarchical surface architecture represents optimized structures for superhydrophobic surfaces [11][33][34][35][36]. Based on the data presented here, we can describe two main superhydrophobic surface architectures for plant
  • surfaces, the micropapillae with wax crystals [6] and micropapillae with cuticle folds. Some remarkable differences exist between the surface architecture of the lotus leaf and Viola petals. In Viola petals microstructures are larger (average height of 40.2 µm) than those of lotus leaves, which have
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2011
Other Beilstein-Institut Open Science Activities